Những câu hỏi liên quan
tuan
Xem chi tiết
zZz Cool Kid_new zZz
30 tháng 4 2020 lúc 17:49

Áp dụng AM-GM:

\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

Tương tự rồi cộng lại:

\(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{c}{a+c}+\frac{a}{c+a}\right)\)

\(=\frac{3}{2}\)

Đẳng thức xảy ra tại a=b=c=1/3

Bình luận (0)
 Khách vãng lai đã xóa
Đặng Noan ♥
Xem chi tiết
Kudo Shinichi
4 tháng 12 2019 lúc 15:59

Do \(a+b+c=1\)  nên :

\(VT=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}+\sqrt{\frac{bc}{a\left(a+b+c\right)+bc}}+\sqrt{\frac{ca}{b\left(a+b+c\right)+ac}}\)

\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\)

Áp dụng BĐT AM - GM :
\(\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

\(\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{c+a}\right)\)

\(\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\le\frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{b+a}\right)\)

Cộng theo vế :
\(\Rightarrow VT\le\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa
Châu Trần
Xem chi tiết
alibaba nguyễn
4 tháng 7 2017 lúc 9:43

\(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)

\(=\frac{a}{\sqrt{\left(ab+bc+ca\right)+a^2}}+\frac{b}{\sqrt{\left(ab+bc+ca\right)+b^2}}+\frac{c}{\sqrt{\left(ab+bc+ca\right)+c^2}}\)

\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(\le\frac{1}{2}.\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{3}{2}\)

Bình luận (0)
Lê Minh Đức
Xem chi tiết
sãkaya
30 tháng 5 2017 lúc 18:55

Theo hệ quả của bất đẳng thức Cauchy 

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow3\ge ab+bc+ac\)

\(\Rightarrow3+c^2\ge ab+bc+ac+c^2=\left(a+c\right)\left(b+c\right)\)

\(\Rightarrow\sqrt{3+c^2}\ge\sqrt{\left(a+c\right)\left(b+c\right)}\)

\(\Rightarrow\frac{ab}{\sqrt{c^2+3}}\le\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

Thiết lập tương tự ta có \(\hept{\begin{cases}\frac{bc}{\sqrt{a^2+3}}\le\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\\\frac{ac}{\sqrt{b^2+3}}\le\frac{ac}{\sqrt{\left(a+b\right)\left(b+c\right)}}\end{cases}}\)

\(\Rightarrow VT\le\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}+\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{ac}{\sqrt{\left(a+b\right)\left(b+c\right)}}\)

Áp dụng bất đẳng thức Cauchy 

\(\Rightarrow\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=\sqrt{\frac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{ab}{a+c}+\frac{ab}{b+c}}{2}\)

Tượng tự ta có \(\hept{\begin{cases}\frac{bc}{\sqrt{\left(a+c\right)\left(a+b\right)}}\le\frac{\frac{bc}{a+c}+\frac{bc}{a+b}}{2}\\\frac{ac}{\sqrt{\left(a+b\right)\left(b+c\right)}}\le\frac{\frac{ac}{a+b}+\frac{ac}{b+c}}{2}\end{cases}}\)

\(\Rightarrow VT\le\frac{\left(\frac{bc}{a+b}+\frac{ac}{a+b}\right)+\left(\frac{ac}{b+c}+\frac{ab}{b+c}\right)+\left(\frac{bc}{a+c}+\frac{ab}{a+c}\right)}{2}\)

\(\Rightarrow VT\le\frac{a+b+c}{2}=\frac{3}{2}\) ( đpcm ) 

Dấu " = " xảy ra khi \(a=b=c=1\)

Bình luận (0)
Thắng Nguyễn
30 tháng 5 2017 lúc 18:51

Ta có BĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\)

\(\Rightarrow ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\cdot9=3\)

Khi đó áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{ab}{\sqrt{c^2+3}}=\frac{ab}{\sqrt{c^2+ab+bc+ca}}=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\). Tương tự cũng có: 

\(\frac{bc}{\sqrt{a^2+3}}\le\frac{1}{2}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right);\frac{ca}{\sqrt{b^2+3}}\le\frac{1}{2}\left(\frac{ca}{a+b}+\frac{ca}{b+c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\frac{1}{2}\left(\frac{bc+ca}{a+b}+\frac{bc+ab}{a+c}+\frac{ab+ca}{b+c}\right)=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Bình luận (0)
qqqqqqqqq
Xem chi tiết
Kiệt Nguyễn
24 tháng 8 2020 lúc 15:42

Ta viết lại bất đẳng thức cần chứng minh thành\(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge6\)

Theo giả thiết, ta có a + b + c = 3 nên\(\sqrt{\frac{2\left(a+3\right)}{a+bc}}=\sqrt{\frac{2\left(a+a+b+c\right)}{a+bc}}=\sqrt{2\left(\frac{a+b}{a+bc}+\frac{a+c}{a+bc}\right)}\)\(\ge\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}\)(Áp dụng bất đẳng thức \(\sqrt{2\left(x+y\right)}\ge\sqrt{x}+\sqrt{y}\))

Hoàn toàn tương tự, ta được: \(\sqrt{\frac{2\left(b+3\right)}{b+ca}}\ge\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}\)\(\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\)\(\ge\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}+\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức, ta được: \(\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+b}{b+ca}}\ge\frac{4\sqrt{a+b}}{\sqrt{a+bc}+\sqrt{b+ca}}\ge\frac{2\sqrt{2}\sqrt{a+b}}{\sqrt{a+bc+b+ca}}=\frac{2\sqrt{2}}{\sqrt{c+1}}\)(*)

Tương tự ta có: \(\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{b+c}{c+ab}}\ge\frac{2\sqrt{2}}{\sqrt{a+1}}\)(**) ; \(\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+a}{a+bc}}\ge\frac{2\sqrt{2}}{\sqrt{b+1}}\)(***)

Cộng theo vế ba bất đẳng thức (*), (**) và (***) suy ra \(\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}+\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)\(\ge\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\)

Do đó ta có: \(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\ge6\)hay \(\frac{1}{\sqrt{c+1}}+\frac{1}{\sqrt{a+1}}+\frac{1}{\sqrt{b+1}}\ge\frac{3}{\sqrt{2}}\)

Thật vậy, áp dụng bất đẳng thức Cauchy – Schwarz ta được \(\frac{1}{\sqrt{c+1}}+\frac{1}{\sqrt{a+1}}+\frac{1}{\sqrt{b+1}}\ge\frac{9}{\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}}\ge\frac{9}{\sqrt{3\left(a+b+c+3\right)}}=\frac{3}{\sqrt{2}}\)

Vậy bất đẳng thức được chứng minh 

Đẳng thức xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
Ông lề mề
Xem chi tiết
tth_new
21 tháng 3 2018 lúc 13:36

Để ý, ta thấy: \(ab+bc+ca-\frac{\left(a+b+c\right)^2}{3}=-\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{6}\le0\)

do đó từ giả thiết, ta suy ra \(ab+bc+ca\le3\). Như vậy: 

\(\frac{ab}{\sqrt{c^3+3}}\le\frac{ab}{\sqrt{c^2+ab+bc+ca}}=\frac{ab}{\sqrt{\left(c+a\right)\left(b+c\right)}}\)

  Áp dụng BĐT AM-GM . Ta có:

\(\frac{ab}{\sqrt{c^2+3}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{b+c}\right)\)

Thiết lập hai BĐT tương tự và cộng lại, ta suy ra dãy đánh giá sau:

\(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\le\frac{1}{2}\left[\left(\frac{ab}{c+a}+\frac{ab}{b+c}\right)+\left(\frac{bc}{a+b}+\frac{ca}{a+b}\right)+\left(\frac{ca}{b+c}+\frac{ab}{b+c}\right)\right]\)

           \(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\le\frac{a+b+c}{2}\)

Từ đó với lưu ý: a + b + c = 3 . Ta suy ra ĐPCM

Bình luận (0)
Châu Trần
Xem chi tiết
Lightning Farron
4 tháng 7 2017 lúc 11:36

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

\(\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\). Thiếp lập 2 BĐT còn lại:

\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{b}{a+b}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{b+c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(A\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\cdot3=\dfrac{3}{2}\)

Xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

Bình luận (0)
Luân Đặng
Xem chi tiết
Phùng Minh Quân
23 tháng 1 2020 lúc 17:34

\(A=\frac{\frac{1}{2}a^2\left(\sqrt[3]{b}+\sqrt[3]{c}+1\right)\left[\left(\sqrt[3]{b}-\sqrt[3]{c}\right)^2+\left(\sqrt[3]{b}-1\right)^2+\left(\sqrt[3]{c}-1\right)^2\right]}{2\left(a+2\right)\left(a+\sqrt[3]{bc}\right)}\ge0\)

\(\Sigma_{cyc}\frac{a^2}{a+\sqrt[3]{bc}}=\Sigma_{cyc}A+\Sigma_{cyc}\frac{2\left(a-1\right)^2}{3\left(a+2\right)}+\frac{5}{6}\left(a+b+c\right)-1\ge\frac{5}{6}\left(a+b+c\right)-1=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Kudo Shinichi
23 tháng 1 2020 lúc 21:24

Áp dụng bất đẳng thức cộng mẫu số 

\(\Rightarrow\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\)\(\ge\frac{\left(a+b+c\right)^2}{a+b+c+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\Rightarrow\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\)\(\ge\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

Chứng minh rằng : \(\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\frac{3}{2}\)

\(\Leftrightarrow18\ge3\left(3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}\right)\)

\(\Leftrightarrow18\ge9+3\sqrt[3]{bc}+3\sqrt[3]{ca}+3\sqrt[3]{ab}\)

\(\Leftrightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\hept{\begin{cases}a+b+1\ge3\sqrt[3]{ab}\\b+c+1\ge3\sqrt[3]{bc}\\c+a+1\ge3\sqrt[3]{ca}\end{cases}}\)

\(\Rightarrow2\left(a+b+c\right)+3\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)

\(\Rightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\left(đpcm\right)\)

Vì \(\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\frac{3}{2}\)

Mà \(\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\ge\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\Rightarrow\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\ge\frac{3}{2}\left(đpcm\right)\)

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa
Minh Nguyễn Cao
Xem chi tiết
Nguyễn Tất Đạt
7 tháng 8 2019 lúc 12:37

Từ giả thiết suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)  (*) (Vì a,b,c > 0)

Áp dụng BĐT Cauchy ta có:

\(\frac{1}{\sqrt{a^3+b}}\le\frac{1}{\sqrt{2}.\sqrt[4]{a^3b}}=\frac{1}{\sqrt{2}}.\sqrt[4]{\frac{1}{a}.\frac{1}{a}.\frac{1}{a}.\frac{1}{b}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{a}+\frac{1}{b}\right)\)

Đánh giá tương tự: \(\frac{1}{\sqrt{b^3+c}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{b}+\frac{1}{c}\right);\frac{1}{\sqrt{c^3+a}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{c}+\frac{1}{a}\right)\)

Từ đó, kết hợp với (*) suy ra:

 \(\frac{1}{\sqrt{a^3+b}}+\frac{1}{\sqrt{b^3+c}}+\frac{1}{\sqrt{c^3+a}}\le\frac{1}{4\sqrt{2}}.4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3\sqrt{2}}{2}\)(đpcm)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1.\)

Bình luận (0)

kết bạn với mình không

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Ngọc Đăng
26 tháng 4 2020 lúc 8:27

shrshdrhdhfhrffhrrfhdrwhr 9-9-9=-9

Bình luận (0)
 Khách vãng lai đã xóa